\(\int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx\) [849]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 189 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {6 d^2 \sqrt {a+b x}}{7 (b d-a e) (d+e x)^{7/2}}+\frac {4 d (23 b d-14 a e) \sqrt {a+b x}}{35 (b d-a e)^2 (d+e x)^{5/2}}+\frac {16 \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right ) \sqrt {a+b x}}{105 (b d-a e)^3 (d+e x)^{3/2}}+\frac {32 b \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right ) \sqrt {a+b x}}{105 (b d-a e)^4 \sqrt {d+e x}} \]

[Out]

6/7*d^2*(b*x+a)^(1/2)/(-a*e+b*d)/(e*x+d)^(7/2)+4/35*d*(-14*a*e+23*b*d)*(b*x+a)^(1/2)/(-a*e+b*d)^2/(e*x+d)^(5/2
)+16/105*(35*a^2*e^2-84*a*b*d*e+58*b^2*d^2)*(b*x+a)^(1/2)/(-a*e+b*d)^3/(e*x+d)^(3/2)+32/105*b*(35*a^2*e^2-84*a
*b*d*e+58*b^2*d^2)*(b*x+a)^(1/2)/(-a*e+b*d)^4/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {963, 79, 47, 37} \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {32 b \sqrt {a+b x} \left (35 a^2 e^2-84 a b d e+58 b^2 d^2\right )}{105 \sqrt {d+e x} (b d-a e)^4}+\frac {16 \sqrt {a+b x} \left (35 a^2 e^2-84 a b d e+58 b^2 d^2\right )}{105 (d+e x)^{3/2} (b d-a e)^3}+\frac {6 d^2 \sqrt {a+b x}}{7 (d+e x)^{7/2} (b d-a e)}+\frac {4 d \sqrt {a+b x} (23 b d-14 a e)}{35 (d+e x)^{5/2} (b d-a e)^2} \]

[In]

Int[(15*d^2 + 20*d*e*x + 8*e^2*x^2)/(Sqrt[a + b*x]*(d + e*x)^(9/2)),x]

[Out]

(6*d^2*Sqrt[a + b*x])/(7*(b*d - a*e)*(d + e*x)^(7/2)) + (4*d*(23*b*d - 14*a*e)*Sqrt[a + b*x])/(35*(b*d - a*e)^
2*(d + e*x)^(5/2)) + (16*(58*b^2*d^2 - 84*a*b*d*e + 35*a^2*e^2)*Sqrt[a + b*x])/(105*(b*d - a*e)^3*(d + e*x)^(3
/2)) + (32*b*(58*b^2*d^2 - 84*a*b*d*e + 35*a^2*e^2)*Sqrt[a + b*x])/(105*(b*d - a*e)^4*Sqrt[d + e*x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 963

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{Qx = PolynomialQuotient[(a + b*x + c*x^2)^p, d + e*x, x], R = PolynomialRemainder[(a + b*x + c*x^2)^p,
 d + e*x, x]}, Simp[R*(d + e*x)^(m + 1)*((f + g*x)^(n + 1)/((m + 1)*(e*f - d*g))), x] + Dist[1/((m + 1)*(e*f -
 d*g)), Int[(d + e*x)^(m + 1)*(f + g*x)^n*ExpandToSum[(m + 1)*(e*f - d*g)*Qx - g*R*(m + n + 2), x], x], x]] /;
 FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&& IGtQ[p, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {6 d^2 \sqrt {a+b x}}{7 (b d-a e) (d+e x)^{7/2}}+\frac {2 \int \frac {3 d (17 b d-14 a e)+28 e (b d-a e) x}{\sqrt {a+b x} (d+e x)^{7/2}} \, dx}{7 (b d-a e)} \\ & = \frac {6 d^2 \sqrt {a+b x}}{7 (b d-a e) (d+e x)^{7/2}}+\frac {4 d (23 b d-14 a e) \sqrt {a+b x}}{35 (b d-a e)^2 (d+e x)^{5/2}}+\frac {\left (8 \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right )\right ) \int \frac {1}{\sqrt {a+b x} (d+e x)^{5/2}} \, dx}{35 (b d-a e)^2} \\ & = \frac {6 d^2 \sqrt {a+b x}}{7 (b d-a e) (d+e x)^{7/2}}+\frac {4 d (23 b d-14 a e) \sqrt {a+b x}}{35 (b d-a e)^2 (d+e x)^{5/2}}+\frac {16 \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right ) \sqrt {a+b x}}{105 (b d-a e)^3 (d+e x)^{3/2}}+\frac {\left (16 b \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right )\right ) \int \frac {1}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx}{105 (b d-a e)^3} \\ & = \frac {6 d^2 \sqrt {a+b x}}{7 (b d-a e) (d+e x)^{7/2}}+\frac {4 d (23 b d-14 a e) \sqrt {a+b x}}{35 (b d-a e)^2 (d+e x)^{5/2}}+\frac {16 \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right ) \sqrt {a+b x}}{105 (b d-a e)^3 (d+e x)^{3/2}}+\frac {32 b \left (58 b^2 d^2-84 a b d e+35 a^2 e^2\right ) \sqrt {a+b x}}{105 (b d-a e)^4 \sqrt {d+e x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.98 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {2 \sqrt {a+b x} \left (1575 b^3 d^2-2100 a b^2 d e+840 a^2 b e^2-\frac {45 d^2 e^3 (a+b x)^3}{(d+e x)^3}+\frac {273 b d^2 e^2 (a+b x)^2}{(d+e x)^2}-\frac {84 a d e^3 (a+b x)^2}{(d+e x)^2}-\frac {875 b^2 d^2 e (a+b x)}{d+e x}+\frac {840 a b d e^2 (a+b x)}{d+e x}-\frac {280 a^2 e^3 (a+b x)}{d+e x}\right )}{105 (b d-a e)^4 \sqrt {d+e x}} \]

[In]

Integrate[(15*d^2 + 20*d*e*x + 8*e^2*x^2)/(Sqrt[a + b*x]*(d + e*x)^(9/2)),x]

[Out]

(2*Sqrt[a + b*x]*(1575*b^3*d^2 - 2100*a*b^2*d*e + 840*a^2*b*e^2 - (45*d^2*e^3*(a + b*x)^3)/(d + e*x)^3 + (273*
b*d^2*e^2*(a + b*x)^2)/(d + e*x)^2 - (84*a*d*e^3*(a + b*x)^2)/(d + e*x)^2 - (875*b^2*d^2*e*(a + b*x))/(d + e*x
) + (840*a*b*d*e^2*(a + b*x))/(d + e*x) - (280*a^2*e^3*(a + b*x))/(d + e*x)))/(105*(b*d - a*e)^4*Sqrt[d + e*x]
)

Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.10

method result size
default \(-\frac {2 \sqrt {b x +a}\, \left (-560 a^{2} b \,e^{5} x^{3}+1344 a \,b^{2} d \,e^{4} x^{3}-928 b^{3} d^{2} e^{3} x^{3}+280 a^{3} e^{5} x^{2}-2632 a^{2} b d \,e^{4} x^{2}+5168 a \,b^{2} d^{2} e^{3} x^{2}-3248 b^{3} d^{3} e^{2} x^{2}+644 a^{3} d \,e^{4} x -3890 a^{2} b \,d^{2} e^{3} x +6664 a \,b^{2} d^{3} e^{2} x -3850 b^{3} d^{4} e x +409 a^{3} d^{2} e^{3}-1953 b \,a^{2} d^{3} e^{2}+2975 b^{2} a \,d^{4} e -1575 b^{3} d^{5}\right )}{105 \left (e x +d \right )^{\frac {7}{2}} \left (a e -b d \right )^{4}}\) \(207\)
gosper \(-\frac {2 \sqrt {b x +a}\, \left (-560 a^{2} b \,e^{5} x^{3}+1344 a \,b^{2} d \,e^{4} x^{3}-928 b^{3} d^{2} e^{3} x^{3}+280 a^{3} e^{5} x^{2}-2632 a^{2} b d \,e^{4} x^{2}+5168 a \,b^{2} d^{2} e^{3} x^{2}-3248 b^{3} d^{3} e^{2} x^{2}+644 a^{3} d \,e^{4} x -3890 a^{2} b \,d^{2} e^{3} x +6664 a \,b^{2} d^{3} e^{2} x -3850 b^{3} d^{4} e x +409 a^{3} d^{2} e^{3}-1953 b \,a^{2} d^{3} e^{2}+2975 b^{2} a \,d^{4} e -1575 b^{3} d^{5}\right )}{105 \left (e x +d \right )^{\frac {7}{2}} \left (e^{4} a^{4}-4 b d \,e^{3} a^{3}+6 b^{2} d^{2} e^{2} a^{2}-4 b^{3} d^{3} e a +b^{4} d^{4}\right )}\) \(248\)

[In]

int((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(9/2)/(b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*(b*x+a)^(1/2)*(-560*a^2*b*e^5*x^3+1344*a*b^2*d*e^4*x^3-928*b^3*d^2*e^3*x^3+280*a^3*e^5*x^2-2632*a^2*b*d
*e^4*x^2+5168*a*b^2*d^2*e^3*x^2-3248*b^3*d^3*e^2*x^2+644*a^3*d*e^4*x-3890*a^2*b*d^2*e^3*x+6664*a*b^2*d^3*e^2*x
-3850*b^3*d^4*e*x+409*a^3*d^2*e^3-1953*a^2*b*d^3*e^2+2975*a*b^2*d^4*e-1575*b^3*d^5)/(e*x+d)^(7/2)/(a*e-b*d)^4

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 487 vs. \(2 (165) = 330\).

Time = 1.66 (sec) , antiderivative size = 487, normalized size of antiderivative = 2.58 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {2 \, {\left (1575 \, b^{3} d^{5} - 2975 \, a b^{2} d^{4} e + 1953 \, a^{2} b d^{3} e^{2} - 409 \, a^{3} d^{2} e^{3} + 16 \, {\left (58 \, b^{3} d^{2} e^{3} - 84 \, a b^{2} d e^{4} + 35 \, a^{2} b e^{5}\right )} x^{3} + 8 \, {\left (406 \, b^{3} d^{3} e^{2} - 646 \, a b^{2} d^{2} e^{3} + 329 \, a^{2} b d e^{4} - 35 \, a^{3} e^{5}\right )} x^{2} + 2 \, {\left (1925 \, b^{3} d^{4} e - 3332 \, a b^{2} d^{3} e^{2} + 1945 \, a^{2} b d^{2} e^{3} - 322 \, a^{3} d e^{4}\right )} x\right )} \sqrt {b x + a} \sqrt {e x + d}}{105 \, {\left (b^{4} d^{8} - 4 \, a b^{3} d^{7} e + 6 \, a^{2} b^{2} d^{6} e^{2} - 4 \, a^{3} b d^{5} e^{3} + a^{4} d^{4} e^{4} + {\left (b^{4} d^{4} e^{4} - 4 \, a b^{3} d^{3} e^{5} + 6 \, a^{2} b^{2} d^{2} e^{6} - 4 \, a^{3} b d e^{7} + a^{4} e^{8}\right )} x^{4} + 4 \, {\left (b^{4} d^{5} e^{3} - 4 \, a b^{3} d^{4} e^{4} + 6 \, a^{2} b^{2} d^{3} e^{5} - 4 \, a^{3} b d^{2} e^{6} + a^{4} d e^{7}\right )} x^{3} + 6 \, {\left (b^{4} d^{6} e^{2} - 4 \, a b^{3} d^{5} e^{3} + 6 \, a^{2} b^{2} d^{4} e^{4} - 4 \, a^{3} b d^{3} e^{5} + a^{4} d^{2} e^{6}\right )} x^{2} + 4 \, {\left (b^{4} d^{7} e - 4 \, a b^{3} d^{6} e^{2} + 6 \, a^{2} b^{2} d^{5} e^{3} - 4 \, a^{3} b d^{4} e^{4} + a^{4} d^{3} e^{5}\right )} x\right )}} \]

[In]

integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(9/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2/105*(1575*b^3*d^5 - 2975*a*b^2*d^4*e + 1953*a^2*b*d^3*e^2 - 409*a^3*d^2*e^3 + 16*(58*b^3*d^2*e^3 - 84*a*b^2*
d*e^4 + 35*a^2*b*e^5)*x^3 + 8*(406*b^3*d^3*e^2 - 646*a*b^2*d^2*e^3 + 329*a^2*b*d*e^4 - 35*a^3*e^5)*x^2 + 2*(19
25*b^3*d^4*e - 3332*a*b^2*d^3*e^2 + 1945*a^2*b*d^2*e^3 - 322*a^3*d*e^4)*x)*sqrt(b*x + a)*sqrt(e*x + d)/(b^4*d^
8 - 4*a*b^3*d^7*e + 6*a^2*b^2*d^6*e^2 - 4*a^3*b*d^5*e^3 + a^4*d^4*e^4 + (b^4*d^4*e^4 - 4*a*b^3*d^3*e^5 + 6*a^2
*b^2*d^2*e^6 - 4*a^3*b*d*e^7 + a^4*e^8)*x^4 + 4*(b^4*d^5*e^3 - 4*a*b^3*d^4*e^4 + 6*a^2*b^2*d^3*e^5 - 4*a^3*b*d
^2*e^6 + a^4*d*e^7)*x^3 + 6*(b^4*d^6*e^2 - 4*a*b^3*d^5*e^3 + 6*a^2*b^2*d^4*e^4 - 4*a^3*b*d^3*e^5 + a^4*d^2*e^6
)*x^2 + 4*(b^4*d^7*e - 4*a*b^3*d^6*e^2 + 6*a^2*b^2*d^5*e^3 - 4*a^3*b*d^4*e^4 + a^4*d^3*e^5)*x)

Sympy [F]

\[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\int \frac {15 d^{2} + 20 d e x + 8 e^{2} x^{2}}{\sqrt {a + b x} \left (d + e x\right )^{\frac {9}{2}}}\, dx \]

[In]

integrate((8*e**2*x**2+20*d*e*x+15*d**2)/(e*x+d)**(9/2)/(b*x+a)**(1/2),x)

[Out]

Integral((15*d**2 + 20*d*e*x + 8*e**2*x**2)/(sqrt(a + b*x)*(d + e*x)**(9/2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(9/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e*(a*e-b*d)>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 560 vs. \(2 (165) = 330\).

Time = 0.44 (sec) , antiderivative size = 560, normalized size of antiderivative = 2.96 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {2 \, {\left (2 \, {\left (4 \, {\left (b x + a\right )} {\left (\frac {2 \, {\left (58 \, b^{10} d^{2} e^{6} - 84 \, a b^{9} d e^{7} + 35 \, a^{2} b^{8} e^{8}\right )} {\left (b x + a\right )}}{b^{6} d^{4} e^{3} {\left | b \right |} - 4 \, a b^{5} d^{3} e^{4} {\left | b \right |} + 6 \, a^{2} b^{4} d^{2} e^{5} {\left | b \right |} - 4 \, a^{3} b^{3} d e^{6} {\left | b \right |} + a^{4} b^{2} e^{7} {\left | b \right |}} + \frac {7 \, {\left (58 \, b^{11} d^{3} e^{5} - 142 \, a b^{10} d^{2} e^{6} + 119 \, a^{2} b^{9} d e^{7} - 35 \, a^{3} b^{8} e^{8}\right )}}{b^{6} d^{4} e^{3} {\left | b \right |} - 4 \, a b^{5} d^{3} e^{4} {\left | b \right |} + 6 \, a^{2} b^{4} d^{2} e^{5} {\left | b \right |} - 4 \, a^{3} b^{3} d e^{6} {\left | b \right |} + a^{4} b^{2} e^{7} {\left | b \right |}}\right )} + \frac {35 \, {\left (55 \, b^{12} d^{4} e^{4} - 188 \, a b^{11} d^{3} e^{5} + 243 \, a^{2} b^{10} d^{2} e^{6} - 142 \, a^{3} b^{9} d e^{7} + 32 \, a^{4} b^{8} e^{8}\right )}}{b^{6} d^{4} e^{3} {\left | b \right |} - 4 \, a b^{5} d^{3} e^{4} {\left | b \right |} + 6 \, a^{2} b^{4} d^{2} e^{5} {\left | b \right |} - 4 \, a^{3} b^{3} d e^{6} {\left | b \right |} + a^{4} b^{2} e^{7} {\left | b \right |}}\right )} {\left (b x + a\right )} + \frac {105 \, {\left (15 \, b^{13} d^{5} e^{3} - 65 \, a b^{12} d^{4} e^{4} + 113 \, a^{2} b^{11} d^{3} e^{5} - 99 \, a^{3} b^{10} d^{2} e^{6} + 44 \, a^{4} b^{9} d e^{7} - 8 \, a^{5} b^{8} e^{8}\right )}}{b^{6} d^{4} e^{3} {\left | b \right |} - 4 \, a b^{5} d^{3} e^{4} {\left | b \right |} + 6 \, a^{2} b^{4} d^{2} e^{5} {\left | b \right |} - 4 \, a^{3} b^{3} d e^{6} {\left | b \right |} + a^{4} b^{2} e^{7} {\left | b \right |}}\right )} \sqrt {b x + a}}{105 \, {\left (b^{2} d + {\left (b x + a\right )} b e - a b e\right )}^{\frac {7}{2}}} \]

[In]

integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(9/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

2/105*(2*(4*(b*x + a)*(2*(58*b^10*d^2*e^6 - 84*a*b^9*d*e^7 + 35*a^2*b^8*e^8)*(b*x + a)/(b^6*d^4*e^3*abs(b) - 4
*a*b^5*d^3*e^4*abs(b) + 6*a^2*b^4*d^2*e^5*abs(b) - 4*a^3*b^3*d*e^6*abs(b) + a^4*b^2*e^7*abs(b)) + 7*(58*b^11*d
^3*e^5 - 142*a*b^10*d^2*e^6 + 119*a^2*b^9*d*e^7 - 35*a^3*b^8*e^8)/(b^6*d^4*e^3*abs(b) - 4*a*b^5*d^3*e^4*abs(b)
 + 6*a^2*b^4*d^2*e^5*abs(b) - 4*a^3*b^3*d*e^6*abs(b) + a^4*b^2*e^7*abs(b))) + 35*(55*b^12*d^4*e^4 - 188*a*b^11
*d^3*e^5 + 243*a^2*b^10*d^2*e^6 - 142*a^3*b^9*d*e^7 + 32*a^4*b^8*e^8)/(b^6*d^4*e^3*abs(b) - 4*a*b^5*d^3*e^4*ab
s(b) + 6*a^2*b^4*d^2*e^5*abs(b) - 4*a^3*b^3*d*e^6*abs(b) + a^4*b^2*e^7*abs(b)))*(b*x + a) + 105*(15*b^13*d^5*e
^3 - 65*a*b^12*d^4*e^4 + 113*a^2*b^11*d^3*e^5 - 99*a^3*b^10*d^2*e^6 + 44*a^4*b^9*d*e^7 - 8*a^5*b^8*e^8)/(b^6*d
^4*e^3*abs(b) - 4*a*b^5*d^3*e^4*abs(b) + 6*a^2*b^4*d^2*e^5*abs(b) - 4*a^3*b^3*d*e^6*abs(b) + a^4*b^2*e^7*abs(b
)))*sqrt(b*x + a)/(b^2*d + (b*x + a)*b*e - a*b*e)^(7/2)

Mupad [B] (verification not implemented)

Time = 13.53 (sec) , antiderivative size = 389, normalized size of antiderivative = 2.06 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{9/2}} \, dx=\frac {\sqrt {d+e\,x}\,\left (\frac {-818\,a^4\,d^2\,e^3+3906\,a^3\,b\,d^3\,e^2-5950\,a^2\,b^2\,d^4\,e+3150\,a\,b^3\,d^5}{105\,e^4\,{\left (a\,e-b\,d\right )}^4}+\frac {x\,\left (-1288\,a^4\,d\,e^4+6962\,a^3\,b\,d^2\,e^3-9422\,a^2\,b^2\,d^3\,e^2+1750\,a\,b^3\,d^4\,e+3150\,b^4\,d^5\right )}{105\,e^4\,{\left (a\,e-b\,d\right )}^4}-\frac {x^2\,\left (560\,a^4\,e^5-3976\,a^3\,b\,d\,e^4+2556\,a^2\,b^2\,d^2\,e^3+6832\,a\,b^3\,d^3\,e^2-7700\,b^4\,d^4\,e\right )}{105\,e^4\,{\left (a\,e-b\,d\right )}^4}+\frac {32\,b^2\,x^4\,\left (35\,a^2\,e^2-84\,a\,b\,d\,e+58\,b^2\,d^2\right )}{105\,e\,{\left (a\,e-b\,d\right )}^4}+\frac {16\,b\,x^3\,\left (35\,a^3\,e^3+161\,a^2\,b\,d\,e^2-530\,a\,b^2\,d^2\,e+406\,b^3\,d^3\right )}{105\,e^2\,{\left (a\,e-b\,d\right )}^4}\right )}{x^4\,\sqrt {a+b\,x}+\frac {d^4\,\sqrt {a+b\,x}}{e^4}+\frac {6\,d^2\,x^2\,\sqrt {a+b\,x}}{e^2}+\frac {4\,d\,x^3\,\sqrt {a+b\,x}}{e}+\frac {4\,d^3\,x\,\sqrt {a+b\,x}}{e^3}} \]

[In]

int((15*d^2 + 8*e^2*x^2 + 20*d*e*x)/((a + b*x)^(1/2)*(d + e*x)^(9/2)),x)

[Out]

((d + e*x)^(1/2)*((3150*a*b^3*d^5 - 818*a^4*d^2*e^3 - 5950*a^2*b^2*d^4*e + 3906*a^3*b*d^3*e^2)/(105*e^4*(a*e -
 b*d)^4) + (x*(3150*b^4*d^5 - 1288*a^4*d*e^4 + 6962*a^3*b*d^2*e^3 - 9422*a^2*b^2*d^3*e^2 + 1750*a*b^3*d^4*e))/
(105*e^4*(a*e - b*d)^4) - (x^2*(560*a^4*e^5 - 7700*b^4*d^4*e + 6832*a*b^3*d^3*e^2 + 2556*a^2*b^2*d^2*e^3 - 397
6*a^3*b*d*e^4))/(105*e^4*(a*e - b*d)^4) + (32*b^2*x^4*(35*a^2*e^2 + 58*b^2*d^2 - 84*a*b*d*e))/(105*e*(a*e - b*
d)^4) + (16*b*x^3*(35*a^3*e^3 + 406*b^3*d^3 - 530*a*b^2*d^2*e + 161*a^2*b*d*e^2))/(105*e^2*(a*e - b*d)^4)))/(x
^4*(a + b*x)^(1/2) + (d^4*(a + b*x)^(1/2))/e^4 + (6*d^2*x^2*(a + b*x)^(1/2))/e^2 + (4*d*x^3*(a + b*x)^(1/2))/e
 + (4*d^3*x*(a + b*x)^(1/2))/e^3)